Hamilton-chain saturated hypergraphs
نویسندگان
چکیده
We say that a hypergraph H is hamiltonian path (cycle) saturated if H does not contain an open (closed) hamiltonian chain but by adding any new edge we create an open (closed) hamiltonian chain in H. In this paper we ask about the smallest size of an r-uniform hamiltonian path (cycle) saturated hypergraph, mainly for r = 3. We present a construction of a family of 3-uniform path (cycle) saturated hamiltonian hypergraphs with Ω(n) edges. On the other hand we prove that the number of edges in an r-uniform hamiltonian path (cycle) saturated hypergraph is at least Ω(n).
منابع مشابه
On hamiltonian chain saturated uniform hypergraphs
We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamiltonian chain but by adding any new edge we create a hamiltonian chain in H. In this paper we ask about the smallest size of a k-uniform hamiltonian chain saturated hypergraph. We present a construction of a family of k-uniform hamiltonian chain saturated hypergraphs with O(nk−1/2) edges.
متن کاملHamilton Saturated Hypergraphs of Essentially Minimum Size
For 1 ≤ ` < k, an `-overlapping cycle is a k-uniform hypergraph in which, for some cyclic vertex ordering, every edge consists of k consecutive vertices and every two consecutive edges share exactly ` vertices. A k-uniform hypergraph H is `-Hamiltonian saturated, 1 ≤ ` ≤ k − 1, if H does not contain an `-overlapping Hamiltonian cycle C (k) n (`) but every hypergraph obtained from H by adding on...
متن کاملPerfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کاملThe Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree
We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...
متن کاملMinimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) ( n 2 ) contains a loose Hamilton cycle. This bound is asy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010